MATH2050C Selected Solution to Assignment 1

Section 2.1.

Solution 3.

(a) 2x + 5 = 8. Subtracting both sides by 5 (or adding -5) to get 2x = 3 and then divide both side by 2 (or multiply both side by 1/2) to get x = 3/2 (3/2 is the same as $\frac{3}{2}$).

(b) $x^2 = 2x$. Adding both side by -2x to get $x^2 - 2x = 0$. By (D), x(x-2) = 0. Using ab = 0 means a or b equals to 0, we conclude that either x = 0 or x = 2.

(c) $x^2 - 1 = 3$. Adding -3 to both sides to get $x^2 - 4 = 0$. Then by factorizing (x+2)(x-2) = 0. Using ab = 0 implies a or b equals to 0, we conclude x = 2 or -2.

(d) (x-1)(x+2) = 0. Immediately get x = 1 or -2.

Solution 13. Show that $a^2 + b^2 = 0$ if and only if a = b = 0. As $a^2 + b^2 - a^2 = b^2 \ge 0$, we know that $a^2 \ge a^2 + b^2$, so $a^2 \le 0$. On the other hand, $a^2 \ge 0$. Thus, $a^2 = 0$ which implies a = 0. Similarly, b = 0. The other direction is obvious.

Solution 16.

(a) $x^2 > 3x + 4$. By factorization this is the same as (x - 4)(x + 1) > 0. Therefore, the solution set is $\{x : x > 4 \text{ or } x < -1\}$.

(b) $1 < x^2 < 4$. The solution set for $x^2 > 1$ is $\{x : x > 1, \text{ or } x < -1\}$ and the solution set for $x^2 < 4$ is $\{x : x \in (-2, 2)\}$. Thus, the solution set for this problem is $(-2, -1) \cup (1, 2)$.

(c) 1/x < x. When x is positive, this is the same as $1 < x^2$ whose solution set is $\{x : x > 1\}$. When x < 0, this is the same as $1 > x^2$ whose solution set is $\{x : x \in (-1,0)\}$. Hence the solution set for this inequality is $(1, \infty) \cup (-1, 0)$.

(d) $1/x < x^2$. When x is positive, this is the same as $1 < x^3$ whose solution set is $\{x : x > 1\}$. When x is negative, this inequality always holds, so the solution set is $(-\infty, 0)$. Therefore, the solution set for this inequality is $(1, \infty) \cup (-\infty, 0)$.

Solution 23. Show that for positive a, b and $n \in \mathbb{N}$, a < b if and only if $a^n < b^n$.

 \Rightarrow . Use induction on *n*. It is obviously true when n = 1. Assume that it is true for *n*. Then $a^{n+1} = aa^n < ab^n$ by induction hypothesis. So, $a^{n+1} < ab^n < b^{n+1}$, done.

 \Leftarrow . When $a^n < b^n$, by factorization $0 < b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1})$ which implies that b - a > 0 since the second factor is always positive.

Supplementary Exercises.

(1). (a) Show that every natural number n > 1 can be written uniquely as

$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$$
,

where p_j 's are prime numbers $p_1 < p_2 < \cdots < p_k$ and $n_j \ge 1$. Suggestion: Use induction on n. (b) Show that for every natural numbers n, m, there exist n', m' with no common factor greater than 1 such that $\frac{n}{m} = \frac{n'}{m'}$.

Solution. (a). Starting from n = 2, a trivial case. Now assuming the factorization is valid for

all $k \leq n$, we are going to show that it holds for n. Indeed, if n is a prime number, then $n = n^1$ the factorization holds. If not, let p > 1 be one of its prime factor. Then n/p is a number less than n. By induction hypothesis,

$$\frac{n}{p} = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} ,$$

so n has a similar decomposition, done. Such factorization is clearly unique (assuming $p_1 < p_2 < \cdots < p_k$).

(b). Easily follows from (a).

Remark. (b) was used in the proof of Theorem 2.1.4.

(2) Denote $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$ and define addition and multiplication on \mathbb{Z}_p by modulo p, that is, a + b and $a \cdot b$ is equal to the reminder of ordinary a + b and $a \cdot b$ after divided by p respectively. Show that \mathbb{Z}_p satisfies all algebraic properties of the real number system. You may try p = 5 first.

Solution. We will work on p = 5. It is clear that all conditions (A1)-(A4), (M1)-(M4) and D are satisfied. It suffices to check the existence of multiplicative inverse. In fact, we have $2 \cdot 3 = 1 \pmod{5}, 3 \cdot 2 = 1 \pmod{5}, 4 \cdot 4 = 1 \pmod{5}.$